FRET 65: a celebration of Förster.

نویسندگان

  • Ammasi Periasamy
  • Steven S Vogel
  • Robert M Clegg
چکیده

منابع مشابه

Assembling programmable FRET-based photonic networks using designer DNA scaffolds

DNA demonstrates a remarkable capacity for creating designer nanostructures and devices. A growing number of these structures utilize Förster resonance energy transfer (FRET) as part of the device's functionality, readout or characterization, and, as device sophistication increases so do the concomitant FRET requirements. Here we create multi-dye FRET cascades and assess how well DNA can marsha...

متن کامل

Time-Resolved Analysis of a Highly Sensitive Förster Resonance Energy Transfer Immunoassay Using Terbium Complexes as Donors and Quantum Dots as Acceptors

CdSe/ZnS core/shell quantum dots (QDs) are used as efficient Förster Resonance Energy Transfer (FRET) acceptors in a time-resolved immunoassays with Tb complexes as donors providing a long-lived luminescence decay. A detailed decay time analysis of the FRET process is presented. QD FRET sensitization is evidenced by a more than 1000-fold increase of the QD luminescence decay time reaching ca. 0...

متن کامل

Probing Nucleic Acid Interactions and Pre-mRNA Splicing by Förster Resonance Energy Transfer (FRET) Microscopy

Förster resonance energy transfer (FRET) microscopy is a powerful technique routinely used to monitor interactions between biomolecules. Here, we focus on the techniques that are used for investigating the structure and interactions of nucleic acids (NAs). We present a brief overview of the most commonly used FRET microscopy techniques, their advantages and drawbacks. We list experimental appro...

متن کامل

Theory of FRET “Spectroscopic Ruler” for Short Distances: Application to Polyproline

Förster resonance energy transfer (FRET) is an important mechanism for the estimation of intermolecular distances, e.g., in fluorescent labeled proteins. The interpretations of FRET experiments with standard Förster theory relies on the following approximations: (i) a point-dipole approximation (PDA) for the coupling between transition densities of the chromophores, (ii) a screening of this cou...

متن کامل

Nanophotonic enhancement of the Förster resonance energy-transfer rate with single nanoapertures.

Tailoring the light-matter interaction and the local density of optical states (LDOS) with nanophotonics provides accurate control over the luminescence properties of a single quantum emitter. This paradigm is also highly attractive to enhance the near-field Förster resonance energy transfer (FRET) between two fluorescent emitters. Despite the wide applications of FRET in nanosciences, using na...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Journal of biomedical optics

دوره 17 1  شماره 

صفحات  -

تاریخ انتشار 2012